1,180 research outputs found

    Study on integration of silver-zinc battery improvements Interim technical report, 1 Jan. - 30 Jun. 1970

    Get PDF
    Components and single cell design for five cell silver zinc batter

    Study on integration of silver-zinc battery improvements Interim technical report, 1 Mar. 1969 - 31 Dec. 1969

    Get PDF
    Research and development in silver zinc batteries for aerospace us

    Propagation of a laser beam in a plasma

    Get PDF
    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent

    The Li Overabundance of J37: Diffusion or Accretion?

    Full text link
    In September 2002 the discovery of a super Li-rich F-dwarf (J37) in NGC 6633, an iron poor analogue of the better studied Hyades and Praecepe open clusters, was announced. This unique star was thought to be the smoking gun for the action of diffusion, models of which predict a narrow "Li-peak" at approximately the correct temperature. However, with more detailed studies into J37s abundance pattern this star provides firm evidence for the accretion of planetesimals or other material from the circumstellar environment of new born stars. Thanks to the specific predictions made about the behaviour of Be abundances, (the most striking of which being no Be in super-Li-rich dwarfs subject to diffusion) the opposing diffusion/accretion predictions can be tested. Initial modelling of the Be line indicates that J37 is as Be rich as it is Li rich; log N(Be) = 2.25 +/- 0.25, and so is broadly consistent with an accretion-fuelled enhancement. However, that both Li and Be are enhanced by much more than the iron-peak elements (as determined in previous studies) suggests that diffusion also plays a role in increasing the abundances of Li and Be specifically. Furthermore, a new data set from the UVES/UT2 combination has allowed the elemental abundance of Iron to be measured, and the set of preliminary stellar parameters determined; Teff ~ 7340 K, log g ~ 4.1, microturbulence ~ 4.3 km/s, [Fe/H] ~ 0.50. This again provides distinct evidence for the effects of accretion in J37 and requires a new synthesis of the Be doublet.Comment: 5 pages, 2 figures. Poster presented at IAU Symposium 224 "The A Star Puzzle", 7-13 July 2004, Poprad, Slovaki

    High sensitivity phonon spectroscopy of Bose-Einstein condensates using matter-wave interference

    Full text link
    We study low momentum excitations of a Bose-Einstein condensate using a novel matter-wave interference technique. In time-of-flight expansion images we observe strong matter-wave fringe patterns. The fringe contrast is a sensitive spectroscopic probe of in-trap phonons and is explained by use of a Bogoliubov excitation projection method applied to the rescaled order parameter of the expanding condensate. Gross-Pitaevskii simulations agree with the experimental data and confirm the validity of the theoretical interpretation. We show that the high sensitivity of this detection scheme gives access to the quantized quasiparticle regime.Comment: 5 pages, 5 figures, author list update

    Beryllium Enhancement as Evidence for Accretion in a Lithium-Rich F Dwarf

    Get PDF
    The early F dwarf star ``J37'' in the open cluster NGC6633 shows an unusual pattern of photospheric abundances, including an order of magnitude enhancement of lithium and iron-peak elements, but an under-abundance of carbon. As a consequence of its thin convection zone these anomalies have been attributed to either radiative diffusion or the accretion of hydrogen-depleted material. By comparing high resolution VLT/UVES spectra of J37 (and other F stars in NGC 6633) with syntheses of the Be ii doublet region at 3131 Ang, we establish that J37 also has a Be abundance (A(Be)=3.0+/-0.5) that is at least ten times the cosmic value. This contradicts radiative diffusion models that produce a Li over-abundance, as they also predict photospheric Be depletion. Instead, since Be is a highly refractory element, it supports the notion that J37 is the first clear example of a star that has accreted volatile-depleted material with a composition similar to chondritic meteorites, although some diffusion may be necessary to explain the low C and O abundances.Comment: Accepted for publication in MNRAS letters, 5 page
    corecore